Понятия со словосочетанием «пересечение множеств»
Связанные понятия
Связное пространство — непустое топологическое пространство, которое невозможно разбить на два непустых непересекающихся открытых подмножества.
Норма́льное простра́нство — топологическое пространство, удовлетворяющее аксиомам отделимости T1, T4, то есть такое топологическое пространство, в котором одноточечные множества замкнуты и любые два непересекающихся замкнутых множества отделимы окрестностями (то есть содержатся в непересекающихся открытых множествах).
Симплициальный компле́кс, или симплициальное пространство, — топологическое пространство с заданной на нём триангуляцией, то есть, неформально говоря, склеенное из топологических симплексов по определённым правилам.
Локально линейно связное пространство ― топологическое пространство, в котором для любой точки и любой её окрестности имеется меньшая линейно связная окрестность. Другими словами, у каждой точки найдётся база окрестностей, состоящая из линейно связных множеств.
В метрике теории графов выпуклым подграфом неориентированного графа G называется подграф, который включает любой кратчайший путь в G между любыми двумя вершинами. Таким образом, это аналогично определению выпуклого множества в геометрии — такое множество содержит отрезок, соединяющий любые две точки множества.
Подробнее: Выпуклый подграф
Гомеоморфи́зм (греч. ὅμοιος — похожий, μορφή — форма) — взаимно однозначное и взаимно непрерывное отображение топологических пространств. Иными словами, это биекция, связывающая топологические структуры двух пространств, поскольку, при непрерывности биекции, образы и прообразы открытых подмножеств являются открытыми множествами, определяющими топологии соответствующих пространств.
Вполне упорядоченное множество — линейно упорядоченное множество M такое, что в любом его непустом подмножестве есть минимальный элемент, другими словами, это фундированное множество с линейным порядком.
Стратифицированное многообразие — множество в топологическом пространстве, являющееся объединенем конечного числа попарно непересекающихся гладких многообразий (называемых стратами) различных размерностей, если при этом замыкание каждого страта состоит из него самого и конечного числа стратов меньших размерностей.
Ультрапредел — конструкция, позволяющая определить предел для широкого класса математических объектов.
Биекция — это отображение, которое является одновременно и сюръективным, и инъективным. При биективном отображении каждому элементу одного множества соответствует ровно один элемент другого множества, при этом определено обратное отображение, которое обладает тем же свойством. Поэтому биективное отображение называют ещё взаимно однозначным отображением (соответствием), одно-однозначным отображением.
Двойственное пространство (иногда сопряжённое пространство) — пространство линейных функционалов на заданном векторном пространстве.
Преде́льная то́чка множества в общей топологии — это такая точка, любая проколотая окрестность которой пересекается с этим множеством.
Определению топологического пространства удовлетворяет широкий класс множеств. В частности, оно включает пространства, топология которых мало похожа на топологию метрического пространства. Поэтому на топологические пространства часто налагают дополнительные требования, в частности, аксиомы отделимости.
Подробнее: Аксиомы отделимости
Си́мплекс или n-мерный тетра́эдр (от лат. simplex ‘простой’) — геометрическая фигура, являющаяся n-мерным обобщением треугольника.
Корасслоение — определённый тип непрерывных отображений между топологическими пространствами с определяющим свойством, двойственным к свойству поднятия гомотопий, выполняющихся для расслоений.
Выпуклый многогранник — частный случай многогранника, пересечение конечного числа замкнутых полупространств.
Грани́ца мно́жества A — множество всех точек, расположенных сколь угодно близко как к точкам во множестве A, так и к точкам вне множества A.
Теорема Мура о факторпространстве — классическое утверждение двумерной топологии, даёт достаточное условие на то, что факторпространство сферы гомеоморфно двумерной сфере.
Задача изоморфизма порождённому подграфу является NP-полной задачей разрешимости в теории сложности и теории графов. Задача заключается в поиске данного графа как порождённого подграфа другого, большего графа.
Числовая последовательность (ранее в русскоязычной математической литературе встречался термин вариа́нта, принадлежащий Ш. Мерэ) — это последовательность элементов числового пространства.
Теорема об обратной функции даёт достаточные условия для существования обратной функции в окрестности точки через производные от самой функции.
Откры́тое мно́жество — это множество, каждый элемент которого входит в него вместе с некоторой окрестностью (в метрических пространствах и, в частности, на числовой прямой). Например, внутренность шара (без границы) является открытым множеством, а шар вместе с границей - не является открытым.
В алгебраической геометрии дивизоры являются обобщением подмногообразий некоторого алгебраического многообразия коразмерности 1. Существуют два различных таких обобщения — дивизоры Вейля и дивизоры Картье (названы в честь Андре Вейля и Пьера Картье), эти понятия эквивалентны в случае многообразий (или схем) без особенностей.
Подробнее: Дивизор (алгебраическая геометрия)
Подпростра́нство — понятие, используемое (непосредственно или в словосочетаниях) в различных разделах математики.
Слабая сходимость в функциональном анализе — вид сходимости в топологических векторных пространствах.
Сингулярные гомологии — теория гомологий, в которой инвариантность и функториальность сразу становятся очевидными, но основное определение требует работы с бесконечномерными пространствами.
Подмногообразие ― термин, используемый для нескольких схожих понятий в общей топологии, дифференциальной геометрии и алгебраической геометрии.
Выпуклые метрические пространства интуитивно определяются как метрические пространства с таким свойством, что любой «отрезок», который соединяет две точки этого пространства, содержит другие точки, кроме своих концов.
Подробнее: Выпуклое метрическое пространство
Изометрия — биекция между метрическими пространствами, сохраняющая расстояния между точками.
Непреры́вное отображе́ние (непрерывная функция) — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
Метри́ческим простра́нством называется непустое множество, в котором между любой парой элементов, обладающих определенными свойствами, определено расстояние, называемое ме́трикой.
Подробнее: Метрическое пространство
Алгебраическое многообразие — центральный объект изучения алгебраической геометрии. Классическое определение алгебраического многообразия — множество решений системы алгебраических уравнений над действительными или комплексными числами. Современные определения обобщают его различными способами, но стараются сохранить геометрическую интуицию, соответствующую этому определению.
Вложение Сегре используется в проективной геометрии для того, чтобы рассматривать прямое произведение двух проективных пространств как проективное многообразие. Названо в честь итальянского математика Беньямино Сегре.
Проективная группа — группа преобразований проективного пространства, индуцируемых линейными преобразованиями соответствующего векторного пространства. Её элементы называются проективными преобразованиями — они обобщают проективные преобразования проективной плоскости. С матричной точки зрения проективная группа — это группа всех невырожденных матриц с точностью до скалярных матриц.
Вну́тренность множества в общей топологии — это совокупность всех внутренних точек. Обычно обозначается Int, вероятно, от англ. Interior. Иногда внутренность множества называют ядром.
Двойственная кривая (или дуальная кривая) к заданной кривой на проективной плоскости — это кривая на двойственной проективной плоскости, состоящая из касательных к заданной гладкой кривой. В этом случае кривые называются взаимно двойственными (дуальными). Понятие может быть обобщено для негладких кривых и на многомерное пространство.
Касательное пространство Зарисского — конструкция в алгебраической геометрии, позволяющая построить касательное пространство в точке алгебраического многообразия. Эта конструкция использует не методы дифференциальной геометрии, а только методы общей, и, в более конкретных ситуациях, линейной алгебры.
В теории графов граф сравнимости — это неориентированный граф, в котором пары элементов соединены ребром, если эти элементы сравнимы в некотором частичном порядке. Графы сравнимости также называют транзитивно-ориентируемыми графами, частично упорядочиваемыми графами и графами вложенности.